An Efficient CNN-Based Method for Intracranial Hemorrhage Segmentation from Computerized Tomography Imaging

Intracranial hemorrhage (ICH) resulting from traumatic brain injury is a serious issue, often leading to death or long-term disability if not promptly diagnosed. Currently, doctors primarily use Computerized Tomography (CT) scans to detect and precisely locate a hemorrhage, typically interpreted by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of imaging 2024-04, Vol.10 (4), p.77
Hauptverfasser: Hoang, Quoc Tuan, Pham, Xuan Hien, Trinh, Xuan Thang, Le, Anh Vu, Bui, Minh V, Bui, Trung Thanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intracranial hemorrhage (ICH) resulting from traumatic brain injury is a serious issue, often leading to death or long-term disability if not promptly diagnosed. Currently, doctors primarily use Computerized Tomography (CT) scans to detect and precisely locate a hemorrhage, typically interpreted by radiologists. However, this diagnostic process heavily relies on the expertise of medical professionals. To address potential errors, computer-aided diagnosis systems have been developed. In this study, we propose a new method that enhances the localization and segmentation of ICH lesions in CT scans by using multiple images created through different data augmentation techniques. We integrate residual connections into a U-Net-based segmentation network to improve the training efficiency. Our experiments, based on 82 CT scans from traumatic brain injury patients, validate the effectiveness of our approach, achieving an IOU score of 0.807 ± 0.03 for ICH segmentation using 10-fold cross-validation.
ISSN:2313-433X
2313-433X
DOI:10.3390/jimaging10040077