Comparative Genomics Reveals Prophylactic and Catabolic Capabilities of Actinobacteria within the Fungus-Farming Termite Symbiosis
, one of the largest bacterial phyla, are ubiquitous in many of Earth's ecosystems and often act as defensive symbionts with animal hosts. Members of the phylum have repeatedly been isolated from basidiomycete-cultivating fungus-farming termites that maintain a monoculture fungus crop on macera...
Gespeichert in:
Veröffentlicht in: | mSphere 2021-03, Vol.6 (2) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | , one of the largest bacterial phyla, are ubiquitous in many of Earth's ecosystems and often act as defensive symbionts with animal hosts. Members of the phylum have repeatedly been isolated from basidiomycete-cultivating fungus-farming termites that maintain a monoculture fungus crop on macerated dead plant substrate. The proclivity for antimicrobial and enzyme production of
make them likely contributors to plant decomposition and defense in the symbiosis. To test this, we analyzed the prophylactic (biosynthetic gene cluster [BGC]) and metabolic (carbohydrate-active enzyme [CAZy]) potential in 16 (10 existing and six new genomes) termite-associated
and compared these to the soil-dwelling close relatives. Using antiSMASH, we identified 435 BGCs, of which 329 (65 unique) were similar to known compound gene clusters, while 106 were putatively novel, suggesting ample prospects for novel compound discovery. BGCs were identified among all major compound categories, including 26 encoding the production of known antimicrobial compounds, which ranged in activity (antibacterial being most prevalent) and modes of action that might suggest broad defensive potential. Peptide pattern recognition analysis revealed 823 (43 unique) CAZymes coding for enzymes that target key plant and fungal cell wall components (predominantly chitin, cellulose, and hemicellulose), confirming a substantial degradative potential of these bacteria. Comparison of termite-associated and soil-dwelling bacteria indicated no significant difference in either BGC or CAZy potential, suggesting that the farming termite hosts may have coopted these soil-dwelling bacteria due to their metabolic potential but that they have not been subject to genome change associated with symbiosis.
have repeatedly been isolated in fungus-farming termites, and our genome analyses provide insights into the potential roles they may serve in defense and for plant biomass breakdown. These insights, combined with their relatively higher abundances in fungus combs than in termite gut, suggest that they are more likely to play roles in fungus combs than in termite guts. Up to 25% of the BGCs we identify have no similarity to known clusters, indicating a large potential for novel chemistry to be discovered. Similarities in metabolic potential of soil-dwelling and termite-associated bacteria suggest that they have environmental origins, but their consistent presence with the termite system suggests their importance for the symb |
---|---|
ISSN: | 2379-5042 2379-5042 |
DOI: | 10.1128/mSphere.01233-20 |