SVND Enhanced Metaheuristic for Plug-In Hybrid Electric Vehicle Routing Problem

Plug-in Hybrid Electric Vehicles (PHEVs), as a new type of environmental-friendly low cost transportation, have attracted growing interests for logistics. The path-planning optimization for PHEV has become a major challenge. In fact, PHEV-based routing optimization is a type of hybrid vehicle routin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-01, Vol.10 (2), p.441
Hauptverfasser: Li, Xiaohui, Shi, Xuemin, Zhao, Yi, Liang, Huagang, Dong, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plug-in Hybrid Electric Vehicles (PHEVs), as a new type of environmental-friendly low cost transportation, have attracted growing interests for logistics. The path-planning optimization for PHEV has become a major challenge. In fact, PHEV-based routing optimization is a type of hybrid vehicle routing problem (HVRP). Compared with the traditional Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP), the PHEV routing problem should consider more constraints, such as time limits, capacity constraints (including fuel tank capacity and battery capacity), electric stations, fuel stations and so forth. In this paper, a Mixed Integer Linear Programming formulation is presented and a novel hybrid metaheuristic approach (HMA_SVND) is proposed. Our method is a combination of memetic algorithm (MA), sequential variable neighborhood descent (SVND) and a revised 2_opt method. Comparative studies show that our proposed method outperformed previous works.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10020441