The Footprint of Exosomes in the Radiation-Induced Bystander Effects
Radiation therapy is widely used as the primary treatment option for several cancer types. However, radiation therapy is a nonspecific method and associated with significant challenges such as radioresistance and non-targeted effects. The radiation-induced non-targeted effects on nonirradiated cells...
Gespeichert in:
Veröffentlicht in: | Bioengineering (Basel) 2022-05, Vol.9 (6), p.243 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radiation therapy is widely used as the primary treatment option for several cancer types. However, radiation therapy is a nonspecific method and associated with significant challenges such as radioresistance and non-targeted effects. The radiation-induced non-targeted effects on nonirradiated cells nearby are known as bystander effects, while effects far from the ionising radiation-exposed cells are known as abscopal effects. These effects are presented as a consequence of intercellular communications. Therefore, a better understanding of the involved intercellular signals may bring promising new strategies for radiation risk assessment and potential targets for developing novel radiotherapy strategies. Recent studies indicate that radiation-derived extracellular vesicles, particularly exosomes, play a vital role in intercellular communications and may result in radioresistance and non-targeted effects. This review describes exosome biology, intercellular interactions, and response to different environmental stressors and diseases, and focuses on their role as functional mediators in inducing radiation-induced bystander effect (RIBE). |
---|---|
ISSN: | 2306-5354 2306-5354 |
DOI: | 10.3390/bioengineering9060243 |