An Improved Rectifier Circuit for Piezoelectric Energy Harvesting from Human Motion

Harvesting energy from human motion for powering small scale electronic devices is attracting research interest in recent years. A piezoelectric device (PD) is capable of harvesting energy from mechanical motions, in the form of alternating current (AC) voltage. The AC voltage generated is of low fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-03, Vol.11 (5), p.2008
Hauptverfasser: Edla, Mahesh, Lim, Yee Yan, Padilla, Ricardo Vasquez, Deguchi, Mikio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Harvesting energy from human motion for powering small scale electronic devices is attracting research interest in recent years. A piezoelectric device (PD) is capable of harvesting energy from mechanical motions, in the form of alternating current (AC) voltage. The AC voltage generated is of low frequency and is often unstable due to the nature of human motion, which renders it unsuitable for charging storage device. Thus, an electronic circuit such as a full bridge rectifier (FBR) is required for direct current (DC) conversion. However, due to forward voltage loss across the diodes, the rectified voltage and output power are low and unstable. In addition, the suitability of existing rectifier circuits in converting AC voltage generated by PD as a result of low frequency human motion induced non-sinusoidal vibration is unknown. In this paper, an improved H-Bridge rectifier circuit is proposed to increase and to stabilise the output voltage. To study the effectiveness of the proposed circuit for human motion application, a series of experimental tests were conducted. Firstly, the performance of the H-Bridge rectifier circuit was studied using a PD attached to a cantilever beam subject to low frequency excitations using a mechanical shaker. Real-life testing was then conducted with the source of excitation changed to a human performing continuous cycling and walking motions at a different speed. Results show that the H-Bridge circuit prominently increases the rectified voltage and output power, while stabilises the voltage when compared to the conventional FBR circuit. This study shows that the proposed circuit is potentially suitable for PEH from human motion.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11052008