Machine Learning Techniques in the CMS Search for Higgs Decays to Dimuons

With the accumulation of large collision datasets at a center-of-mass energy of 13 TeV, the LHC experiments can search for rare processes, where the extraction of signal events from the copious Standard Model backgrounds poses an enormous challenge. Multivariate techniques promise to achieve the bes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2019, Vol.214, p.6002
Hauptverfasser: Bourilkov, Dimitri, Acosta, Darin, Bortignon, Pierluigi, Brinkerhoff, Andrew, Carnes, Andrew, Gleyzer, Sergei, Regnery, Brendan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the accumulation of large collision datasets at a center-of-mass energy of 13 TeV, the LHC experiments can search for rare processes, where the extraction of signal events from the copious Standard Model backgrounds poses an enormous challenge. Multivariate techniques promise to achieve the best sensitivities by isolating events with higher signal-to-background ratios. Using the search for Higgs bosons decaying to two muons in the CMS experiment as an example, we describe the use of Boosted Decision Trees coupled with automated categorization for optimal event classification, bringing an increase in sensitivity equivalent to 50% more data.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201921406002