An Ultradiscrete Matrix Version of the Fourth Painlevé Equation

This paper is concerned with the matrix generalization of ultradiscrete systems. Specifically, we establish a matrix generalization of the ultradiscrete fourth Painlevé equation (ud-PIV). Well-defined multicomponent systems that permit ultradiscretization are obtained using an approach that relie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2007-06, Vol.2007
Hauptverfasser: Chris M. Field, Chris M. Ormerod
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the matrix generalization of ultradiscrete systems. Specifically, we establish a matrix generalization of the ultradiscrete fourth Painlevé equation (ud-PIV). Well-defined multicomponent systems that permit ultradiscretization are obtained using an approach that relies on a group defined by constraints imposed by the requirement of a consistent evolution of the systems. The ultradiscrete limit of these systems yields coupled multicomponent ultradiscrete systems that generalize ud-PIV. The dynamics, irreducibility, and integrability of the matrix-valued ultradiscrete systems are studied.
ISSN:1687-1839
1687-1847
DOI:10.1155/2007/96752