An Ultradiscrete Matrix Version of the Fourth Painlevé Equation
This paper is concerned with the matrix generalization of ultradiscrete systems. Specifically, we establish a matrix generalization of the ultradiscrete fourth Painlevé equation (ud-PIV). Well-defined multicomponent systems that permit ultradiscretization are obtained using an approach that relie...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2007-06, Vol.2007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the matrix generalization of ultradiscrete systems. Specifically, we establish a matrix generalization of the ultradiscrete fourth Painlevé equation (ud-PIV). Well-defined multicomponent systems that permit ultradiscretization are obtained using an approach that relies on a group defined by constraints imposed by the requirement of a consistent evolution of the systems. The ultradiscrete limit of these systems yields coupled multicomponent ultradiscrete systems that generalize ud-PIV. The dynamics, irreducibility, and integrability of the matrix-valued ultradiscrete systems are studied. |
---|---|
ISSN: | 1687-1839 1687-1847 |
DOI: | 10.1155/2007/96752 |