Commutators of Littlewood-Paley gκ∗ $g_{\kappa}^{} $-functions on non-homogeneous metric measure spaces

The main purpose of this paper is to prove that the boundedness of the commutator generated by the Littlewood-Paley operator and RBMO ( ) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open mathematics (Warsaw, Poland) Poland), 2017-11, Vol.15 (1), p.1283-1299
Hauptverfasser: Lu, Guanghui, Tao, Shuangping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main purpose of this paper is to prove that the boundedness of the commutator generated by the Littlewood-Paley operator and RBMO ( ) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of satisfies a certain Hörmander-type condition, the authors prove that is bounded on Lebesgue spaces ) for 1 < < ∞, bounded from the space log ) to the weak Lebesgue space ), and is bounded from the atomic Hardy spaces ) to the weak Lebesgue spaces ).
ISSN:2391-5455
2391-5455
DOI:10.1515/math-2017-0110