Commutators of Littlewood-Paley gκ∗ $g_{\kappa}^{} $-functions on non-homogeneous metric measure spaces
The main purpose of this paper is to prove that the boundedness of the commutator generated by the Littlewood-Paley operator and RBMO ( ) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of...
Gespeichert in:
Veröffentlicht in: | Open mathematics (Warsaw, Poland) Poland), 2017-11, Vol.15 (1), p.1283-1299 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main purpose of this paper is to prove that the boundedness of the commutator
generated by the Littlewood-Paley operator
and RBMO (
) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of
satisfies a certain Hörmander-type condition, the authors prove that
is bounded on Lebesgue spaces
) for 1 <
< ∞, bounded from the space
log
) to the weak Lebesgue space
), and is bounded from the atomic Hardy spaces
) to the weak Lebesgue spaces
). |
---|---|
ISSN: | 2391-5455 2391-5455 |
DOI: | 10.1515/math-2017-0110 |