Bis-Azide Low-Band Gap Cross-Linkable Molecule N3‑[CPDT(FBTTh2)2] to Fully Thermally Stabilize Organic Solar Cells Based on P3HT:PC61BM
We synthesized a novel bis-azide low-band gap cross-linkable molecule N3-[CPDT(FBTTh2)2] with wide absorption. This compound is of interest as an additive in polymer/fullerene bulk heterojunction solar cells. In addition to providing efficient thermal stabilization of the morphology, the additive c...
Gespeichert in:
Veröffentlicht in: | ACS omega 2017-04, Vol.2 (4), p.1340-1349 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We synthesized a novel bis-azide low-band gap cross-linkable molecule N3-[CPDT(FBTTh2)2] with wide absorption. This compound is of interest as an additive in polymer/fullerene bulk heterojunction solar cells. In addition to providing efficient thermal stabilization of the morphology, the additive can harvest additional solar light compared with pristine poly(3-hexyl thiophene) to improve the power-conversion efficiency (PCE). The additional donor material was visualized from the appearance of additional external quantum efficiency contributions between 650 and 800 nm. An open-circuit voltage increase of ∼2% compensates the decrease in the short-circuit current of ∼2% to achieve a fully thermally stabilized PCE of 3.5% after 24 h of annealing at 150 °C. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.6b00476 |