Strong and ductile Resinvar alloys with temperature- and time-independent resistivity

Materials with well-defined electrical resistivity that does not change with temperature or time are important in robotics, communication and automation. However, the challenge of designing such materials has remained elusive due to the temperature-dependent electron-phonon scattering. Moreover, res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-08, Vol.15 (1), p.7199-11, Article 7199
Hauptverfasser: Zhu, Shuya, Yan, Dingshun, Zhang, Yong, Han, Liuliu, Raabe, Dierk, Li, Zhiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Materials with well-defined electrical resistivity that does not change with temperature or time are important in robotics, communication and automation. However, the challenge of designing such materials has remained elusive due to the temperature-dependent electron-phonon scattering. Moreover, resistive electrical conductors used in flexible and mobile systems under high mechanical loads must possess both high strength and ductility. Achieving such multi-properties presents a fundamental challenge. Here, we solve this problem by combining multicomponent alloy design with atomic-scale chemistry tuning. We term the resultant material ‘Resinvar’ alloy, due to its invariable resistivity (148 μΩ·cm) over wide temperature ranges from room temperature to 723 K. The alloy also has high tensile strength (948 MPa) at large tensile elongation (53%). The distorted lattice, chemical short-range order and ordered coherent nanoprecipitates in the material enable the invariant resistivity via promoting temperature-independent inelastic electron scattering, and contribute to the excellent strength-ductility synergy by manipulating dislocation slip. Designing materials with temperature-independent electrical resistivity is difficult due to temperature-dependent electron-phonon scattering. Here, the authors achieve this in a strong and ductile alloy by tuning atomic-scale chemistry and structure.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-51572-7