Electron beam powder bed fusion of Ti-30Ta high-temperature shape memory alloy: microstructure and phase transformation behaviour

The present study reports on additive manufacturing of a Ti-30Ta (at.%) high-temperature shape memory alloy (HT-SMA) using electron beam powder bed fusion (PBF-EB/M) technique. Detailed microstructure analysis was conducted to reveal the microstructural evolution along the entire process chain, i.e....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virtual and physical prototyping 2024-12, Vol.19 (1)
Hauptverfasser: Lauhoff, C., Nobach, M., Medvedev, A., Arold, T., Torrent, C., Elambasseril, J., Krooß, P., Stenzel, M., Weinmann, M., Xu, W., Molotnikov, A., Niendorf, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study reports on additive manufacturing of a Ti-30Ta (at.%) high-temperature shape memory alloy (HT-SMA) using electron beam powder bed fusion (PBF-EB/M) technique. Detailed microstructure analysis was conducted to reveal the microstructural evolution along the entire process chain, i.e. from gas-atomised powder to post-processed material. PBF-EB/M processed structures with near full density and an isotropic, β-phase stabilised microstructure, i.e. equiaxed β-grains of around 20 µm in diameter with no preferred crystallographic orientation, are reported. As revealed by differential scanning calorimetry, post-process heat-treated Ti-Ta demonstrates a reversible martensitic phase transformation well above 100°C. Although partly unmolten Ta-particles after both gas atomisation and PBF-EB/M remain a challenge towards robust processing, PBF-EB/M appears to show significant potential for fabrication of Ti-Ta HT-SMAs, especially when functional metal parts and components with complex shapes are required, which are difficult to fabricate conventionally.
ISSN:1745-2759
1745-2767
DOI:10.1080/17452759.2024.2358107