Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination

Inhaled delivery of messenger RNA (mRNA) using lipid nanoparticle (LNP) holds immense promise for treating pulmonary diseases or serving as a mucosal vaccine. However, the unsatisfactory delivery efficacy caused by the disintegration and aggregation of LNP during nebulization represents a major obst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-11, Vol.15 (1), p.9471-18, Article 9471
Hauptverfasser: Liu, Shuai, Wen, Yixing, Shan, Xinzhu, Ma, Xinghuan, Yang, Chen, Cheng, Xingdi, Zhao, Yuanyuan, Li, Jingjiao, Mi, Shiwei, Huo, Haonan, Li, Wei, Jiang, Ziqiong, Li, Yijia, Lin, Jiaqi, Miao, Lei, Lu, Xueguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhaled delivery of messenger RNA (mRNA) using lipid nanoparticle (LNP) holds immense promise for treating pulmonary diseases or serving as a mucosal vaccine. However, the unsatisfactory delivery efficacy caused by the disintegration and aggregation of LNP during nebulization represents a major obstacle. To address this, we develop a charge-assisted stabilization (CAS) strategy aimed at inducing electrostatic repulsions among LNPs to enhance their colloidal stability. By optimizing the surface charges using a peptide-lipid conjugate, the leading CAS-LNP demonstrates exceptional stability during nebulization, resulting in efficient pulmonary mRNA delivery in mouse, dog, and pig. Inhaled CAS-LNP primarily transfect dendritic cells, triggering robust mucosal and systemic immune responses. We demonstrate the efficacy of inhaled CAS-LNP as a vaccine for SARS-CoV-2 Omicron variant and as a cancer vaccine to inhibit lung metastasis. Our findings illustrate the design principles of nebulized LNPs, paving the way of developing inhaled mRNA vaccines and therapeutics. The instability of lipid nanoparticles during nebulization hinders inhaled mRNA vaccines. Here, the authors report on a charge-assisted stabilization strategy using a peptide-lipid conjugate to improve lipid nanoparticle stability, enabling mRNA-based mucosal vaccines for SARS-CoV-2 and lung cancer.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-53914-x