Active Electro-Location of Objects in the Underwater Environment Based on the Mixed Polarization Multiple Signal Classification Algorithm
This article proposes a novel active localization method based on the mixed polarization multiple signal classification (MP-MUSIC) algorithm for positioning a metal target or an insulator target in the underwater environment by using a uniform circular antenna (UCA). The boundary element method (BEM...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2018-02, Vol.18 (2), p.554 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article proposes a novel active localization method based on the mixed polarization multiple signal classification (MP-MUSIC) algorithm for positioning a metal target or an insulator target in the underwater environment by using a uniform circular antenna (UCA). The boundary element method (BEM) is introduced to analyze the boundary of the target by use of a matrix equation. In this method, an electric dipole source as a part of the locating system is set perpendicularly to the plane of the UCA. As a result, the UCA can only receive the induction field of the target. The potential of each electrode of the UCA is used as spatial-temporal localization data, and it does not need to obtain the field component in each direction compared with the conventional fields-based localization method, which can be easily implemented in practical engineering applications. A simulation model and a physical experiment are constructed. The simulation and the experiment results provide accurate positioning performance, with the help of verifying the effectiveness of the proposed localization method in underwater target locating. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s18020554 |