Synthesis of K+ and Na+ Synthetic Sodalite Phases by Low-Temperature Alkali Fusion of Kaolinite for Effective Remediation of Phosphate Ions: The Impact of the Alkali Ions and Realistic Studies

Two sodalite phases (potassium sodalite (K.SD) and sodium sodalite (Na.SD)) were prepared using alkali fusion of kaolinite followed by a hydrothermal treatment step for 4 h at 90 °C. The synthetic phases were characterized as potential adsorbents for PO43− from the aqueous solutions and real water f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganics 2023-01, Vol.11 (1), p.14
Hauptverfasser: Bellucci, Stefano, Eid, Mohamed Hamdy, Fekete, Ilona, Péter, Szűcs, Kovács, Attila, Othman, Sarah I., Ajarem, Jamaan S., Allam, Ahmed A., Abukhadra, Mostafa R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two sodalite phases (potassium sodalite (K.SD) and sodium sodalite (Na.SD)) were prepared using alkali fusion of kaolinite followed by a hydrothermal treatment step for 4 h at 90 °C. The synthetic phases were characterized as potential adsorbents for PO43− from the aqueous solutions and real water from the Rákos stream (0.52 mg/L) taking into consideration the impact of the structural alkali ions (K+ and Na+). The synthetic Na.SD phase exhibited enhanced surface area (232.4 m2/g) and ion-exchange capacity (126.4 meq/100 g) as compared to the K.SD phase. Moreover, the Na.SD phase exhibited higher PO43− sequestration capacity (Qmax = 261.6 mg g−1 and Qsat = 175.3 mg g−1) than K.SD phase (Qmax = 201.9 mg g−1 and Qsat = 127.4 mg g−1). The PO43− sequestration processes of both Na.SD and K.SD are spontaneous, homogenous, and exothermic reactions that follow the Langmuir isotherm and pseudo-first-order kinetics. Estimation of the occupied active site density validates the enrichment of the Na.SD phase with high quantities of active sites (Nm = 86.1 mg g−1) as compared to K.SD particles (Nm = 44.4 mg g−1). Moreover, the sequestration and Gaussian energies validate the cooperation of physisorption and weak chemisorption processes including zeolitic ion exchange reactions. Both Na.SD and K.SD exhibit significant selectivity for PO43− in the coexisting of other common anions (Cl−, SO42−, HCO3−, and NO3−) and strong stability properties. Their realistic application results in the complete adsorption of PO43- from Rákos stream water after 20 min (Na. SD) and 60 min (K.SD).
ISSN:2304-6740
2304-6740
DOI:10.3390/inorganics11010014