TCP Performance in Multi-Polling Game Theory-Based IEEE 802.11 Networks

Easy usage and integration with various applications made IEEE 802.11 one of the most used technologies these days, both at home and business premises. Over the years, there have been many additional improvements to the 802.11 standards. Nevertheless, the algorithms and Media Access Control (MAC) la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical, Control and Communication Engineering Control and Communication Engineering, 2016-12, Vol.11 (1), p.33-40
Hauptverfasser: Cuzanauskas, Tomas, Anskaitis, Aurimas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Easy usage and integration with various applications made IEEE 802.11 one of the most used technologies these days, both at home and business premises. Over the years, there have been many additional improvements to the 802.11 standards. Nevertheless, the algorithms and Media Access Control (MAC) layer methods are almost the same as in previous Wi-Fi versions. In this paper, a set of methods to improve the total system capacity is proposed – such as efficient transmit power management based on Game Theory with a custom wireless medium protocol. The transmit power management and wireless medium protocol is verified by both simulation and real application scenarios. The results conclude that the capacity of the proposed wireless medium protocol is overall 20 percent higher than the standard 802.11 wireless medium access protocols. Additional TCP Acknowledgment filtering, which was tested together with the proposed wireless medium access protocol, can provide up to 10-percent-higher TCP throughput in high-density scenarios, especially for asymmetrical traffic cases. The conducted research suggests that efficient power management could result in lighter transmit power allocation rules that are currently set by the local regulators for current Wi-Fi devices. Thus, better propagation characteristics and wireless medium management would lead to an overall higher wireless system capacity.
ISSN:2255-9159
2255-9159
DOI:10.1515/ecce-2016-0010