Compact Wideband Groove Gap Waveguide Bandpass Filters Manufactured with 3D Printing and CNC Milling Techniques
This paper presents for the first time a compact wideband bandpass filter in groove gap waveguide (GGW) technology. The structure is obtained by including metallic pins along the central part of the GGW bottom plate according to an -order Chebyshev stepped impedance synthesis method. The bandpass re...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2023-07, Vol.23 (13), p.6234 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents for the first time a compact wideband bandpass filter in groove gap waveguide (GGW) technology. The structure is obtained by including metallic pins along the central part of the GGW bottom plate according to an
-order Chebyshev stepped impedance synthesis method. The bandpass response is achieved by combining the high-pass characteristic of the GGW and the low-pass behavior of the metallic pins, which act as impedance inverters. This simple structure together with the rigorous design technique allows for a reduction in the manufacturing complexity for the realization of high-performance filters. These capabilities are verified by designing a fifth-order GGW Chebyshev bandpass filter with a bandwidth
= 3.7 GHz and return loss
= 20 dB in the frequency range of the WR-75 standard, and by implementing it using computer numerical control (CNC) machining and three-dimensional (3D) printing techniques. Three prototypes have been manufactured: one using a computer numerical control (CNC) milling machine and two others by means of a stereolithography-based 3D printer and a photopolymer resin. One of the two resin-based prototypes has been metallized from a silver vacuum thermal evaporation deposition technique, while for the other a spray coating system has been used. The three prototypes have shown a good agreement between the measured and simulated
-parameters, with insertion losses better than
= 1.2 dB. Reduced size and high-performance frequency responses with respect to other GGW bandpass filters were obtained. These wideband GGW filter prototypes could have a great potential for future emerging satellite communications systems. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23136234 |