On existence results for a class of biharmonic elliptic problems without (AR) condition
In this paper, we study the following biharmonic elliptic equation in $ \mathbb{R}^{N} $: \begin{document}$ \Delta^{2}\psi-\Delta \psi+P(x)\psi = g(x, \psi), \ \ x\in\mathbb{R}^{N}, $\end{document} where $ g $ and $ P $ are periodic in $ x_{1}, \cdots, x_{N} $, $ g(x, \psi) $ is subcritical and o...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2024-01, Vol.9 (7), p.18897-18909 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the following biharmonic elliptic equation in $ \mathbb{R}^{N} $:
\begin{document}$ \Delta^{2}\psi-\Delta \psi+P(x)\psi = g(x, \psi), \ \ x\in\mathbb{R}^{N}, $\end{document}
where $ g $ and $ P $ are periodic in $ x_{1}, \cdots, x_{N} $, $ g(x, \psi) $ is subcritical and odd in $ \psi $. Without assuming the Ambrosetti-Rabinowitz condition, we prove the existence of infinitely many geometrically distinct solutions for this equation, and the existence of ground state solutions is established as well. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2024919 |