Mapping Burned Areas in Tropical Forests Using a Novel Machine Learning Framework

This paper presents an application of a novel machine-learning framework on MODIS (moderate-resolution imaging spectroradiometer) data to map burned areas over tropical forests of South America and South-east Asia. The RAPT (RAre Class Prediction in the absence of True labels) framework is able to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2018-01, Vol.10 (2), p.69
Hauptverfasser: Mithal, Varun, Nayak, Guruprasad, Khandelwal, Ankush, Kumar, Vipin, Nemani, Ramakrishna, Oza, Nikunj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an application of a novel machine-learning framework on MODIS (moderate-resolution imaging spectroradiometer) data to map burned areas over tropical forests of South America and South-east Asia. The RAPT (RAre Class Prediction in the absence of True labels) framework is able to build data adaptive classification models using noisy training labels. It is particularly suitable when expert annotated training samples are difficult to obtain as in the case of wild fires in the tropics. This framework has been used to build burned area maps from MODIS surface reflectance data as features and Active Fire hotspots as training labels that are known to have high commission and omission errors due to the prevalence of cloud cover and smoke, especially in the tropics. Using the RAPT framework we report burned areas for 16 MODIS tiles from 2001 to 2014. The total burned area detected in the tropical forests of South America and South-east Asia during these years is 2,071,378 MODIS (500 m) pixels (approximately 520 K sq. km.), which is almost three times compared to the estimates from collection 5 MODIS MCD64A1 (783,468 MODIS pixels). An evaluation using Landsat-based reference burned area maps indicates that our product has an average user’s accuracy of 53% and producer’s accuracy of 55% while collection 5 MCD64A1 burned area product has an average user’s accuracy of 61% and producer’s accuracy of 27%. Our analysis also indicates that the two products can be complimentary and a combination of the two approaches is likely to provide a more comprehensive assessment of tropical fires. Finally, we have created a publicly accessible web-based viewer that helps the community to visualize the burned area maps produced using RAPT and examine various validation sources corresponding to every detected MODIS pixel.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs10010069