Privacy-preserving cancer type prediction with homomorphic encryption

Cancer genomics tailors diagnosis and treatment based on an individual’s genetic information and is the crux of precision medicine. However, analysis and maintenance of high volume of genetic mutation data to build a machine learning (ML) model to predict the cancer type is a computationally expensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-01, Vol.13 (1), p.1661-1661, Article 1661
Hauptverfasser: Sarkar, Esha, Chielle, Eduardo, Gursoy, Gamze, Chen, Leo, Gerstein, Mark, Maniatakos, Michail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cancer genomics tailors diagnosis and treatment based on an individual’s genetic information and is the crux of precision medicine. However, analysis and maintenance of high volume of genetic mutation data to build a machine learning (ML) model to predict the cancer type is a computationally expensive task and is often outsourced to powerful cloud servers, raising critical privacy concerns for patients’ data. Homomorphic encryption (HE) enables computation on encrypted data, thus, providing cryptographic guarantees to protect privacy. But restrictive overheads of encrypted computation deter its usage. In this work, we explore the challenges of privacy preserving cancer type prediction using a dataset consisting of more than 2 million genetic mutations from 2713 patients for several cancer types by building a highly accurate ML model and then implementing its privacy preserving version in HE. Our solution for cancer type inference encodes somatic mutations based on their impact on the cancer genomes into the feature space and then uses statistical tests for feature selection. We propose a fast matrix multiplication algorithm for HE-based model. Our final model achieves 0.98 micro-average area under curve improving accuracy from 70.08 to 83.61% , being 550 times faster than the standard matrix multiplication-based privacy-preserving models. Our tool can be found at https://github.com/momalab/octal-candet .
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-28481-8