A New Method for Positional Accuracy Control for Non-Normal Errors Applied to Airborne Laser Scanner Data

A new statistical method for the quality control of the positional accuracy, useful in a wide range of data sets, is proposed and its use is illustrated through its application to airborne laser scanner (ALS) data. The quality control method is based on the use of a multinomial distribution that cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-09, Vol.9 (18), p.3887
Hauptverfasser: Ariza-López, Francisco Javier, Rodríguez-Avi, José, González-Aguilera, Diego, Rodríguez-Gonzálvez, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new statistical method for the quality control of the positional accuracy, useful in a wide range of data sets, is proposed and its use is illustrated through its application to airborne laser scanner (ALS) data. The quality control method is based on the use of a multinomial distribution that categorizes cases of errors according to metric tolerances. The use of the multinomial distribution is a very novel and powerful approach to the problem of evaluating positional accuracy, since it allows for eliminating the need for a parametric model for positional errors. Three different study cases based on ALS data (infrastructure, urban, and natural cases) that contain non-normal errors were used. Three positional accuracy controls with different tolerances were developed. In two of the control cases, the tolerances were defined by a Gaussian model, and in the third control case, the tolerances were defined from the quantiles of the observed error distribution. The analysis of the test results based on the type I and type II errors show that the method is able to control the positional accuracy of freely distributed data.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9183887