Establishment of an orthotopic patient-derived xenograft mouse model using uveal melanoma hepatic metastasis

Metastatic uveal melanoma is a highly fatal disease; most patients die from their hepatic metastasis within 1 year. A major drawback in the development of new treatments for metastatic uveal melanoma is the difficulty in obtaining appropriate cell lines and the lack of appropriate animal models. Pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of translational medicine 2017-06, Vol.15 (1), p.145-145, Article 145
Hauptverfasser: Kageyama, Ken, Ohara, Masahiro, Saito, Kengo, Ozaki, Shinji, Terai, Mizue, Mastrangelo, Michael J, Fortina, Paolo, Aplin, Andrew E, Sato, Takami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metastatic uveal melanoma is a highly fatal disease; most patients die from their hepatic metastasis within 1 year. A major drawback in the development of new treatments for metastatic uveal melanoma is the difficulty in obtaining appropriate cell lines and the lack of appropriate animal models. Patient-derived xenograft (PDX) tumor models, bearing ectopically implanted tumors at a subcutaneous site, have been developed. However, these ectopically implanted PDX models have obstacles to translational research, including a low engraftment rate, slow tumor growth, and biological changes after multiple passages due to the different microenvironment. To overcome these limitations, we developed a new method to directly transplant biopsy specimens to the liver of immunocompromised mice. By using two metastatic uveal melanoma cell lines, we demonstrated that the liver provides a more suitable microenvironment for tumor growth compared to subcutaneous sites and that surgical orthotopic implantation (SOI) of tumor pieces allows the creation of a liver tumor in immunocompromised mice. Subsequently, 10 of 12 hepatic metastasis specimens from patients were successfully xenografted into the immunocompromised mice (83.3% success rate) using SOI, including 8 of 10 needle biopsy specimens (80%). Additionally, four cryopreserved PDX tumors were re-implanted to new mice and re-establishment of PDX tumors was confirmed in all four mice. The serially passaged xenograft tumors as well as the re-implanted tumors after cryopreservation were similar to the original patient tumors in histologic, genomic, and proteomic expression profiles. CT imaging was effective for detecting and monitoring PDX tumors in the liver of living mice. The expression of Ki67 in original patient tumors was a predictive factor for implanted tumor growth and the success of serial passages in PDX mice. Surgical orthotopic implantation of hepatic metastasis from uveal melanoma is highly successful in the establishment of orthotopic PDX models, enhancing their practical utility for research applications. By using CT scan, tumor growth can be monitored, which is beneficial to evaluate treatment effects in interventional studies.
ISSN:1479-5876
1479-5876
DOI:10.1186/s12967-017-1247-z