Quantum Trajectories: Real or Surreal?

The claim of Kocsis et al. to have experimentally determined "photon trajectories" calls for a re-examination of the meaning of "quantum trajectories". We will review the arguments that have been assumed to have established that a trajectory has no meaning in the context of quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2018-05, Vol.20 (5), p.353
Hauptverfasser: Hiley, Basil J, Van Reeth, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The claim of Kocsis et al. to have experimentally determined "photon trajectories" calls for a re-examination of the meaning of "quantum trajectories". We will review the arguments that have been assumed to have established that a trajectory has no meaning in the context of quantum mechanics. We show that the conclusion that the Bohm trajectories should be called "surreal" because they are at "variance with the actual observed track" of a particle is wrong as it is based on a false argument. We also present the results of a numerical investigation of a double Stern-Gerlach experiment which shows clearly the role of the spin within the Bohm formalism and discuss situations where the appearance of the quantum potential is open to direct experimental exploration.
ISSN:1099-4300
1099-4300
DOI:10.3390/e20050353