Antileishmanial Activity of Dimeric Flavonoids Isolated from Arrabidaea brachypoda

Leishmaniasis are diseases caused by parasites belonging to genus. The treatment with pentavalent antimonials present high toxicity. Secondary line drugs, such as amphotericin B and miltefosine also have a narrow therapeutic index. Therefore, there is an urgent need to develop new drugs to treat lei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2018-12, Vol.24 (1), p.1
Hauptverfasser: Rocha, Vinícius P C, Quintino da Rocha, Cláudia, Ferreira Queiroz, Emerson, Marcourt, Laurence, Vilegas, Wagner, Grimaldi, Gabriela B, Furrer, Pascal, Allémann, Éric, Wolfender, Jean-Luc, Soares, Milena B P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leishmaniasis are diseases caused by parasites belonging to genus. The treatment with pentavalent antimonials present high toxicity. Secondary line drugs, such as amphotericin B and miltefosine also have a narrow therapeutic index. Therefore, there is an urgent need to develop new drugs to treat leishmaniasis. Here, we present the in vitro anti-leishmanial activity of unusual dimeric flavonoids purified from . Three compounds were tested against sp. Compound 2 was the most active against promastigotes. Quantifying the in vitro infected macrophages revealed that compound 2 was also the most active against intracellular amastigotes of , without displaying host cell toxicity. Drug combinations presented an additive effect, suggesting the absence of interaction between amphotericin B and compound 2. Amastigotes treated with compound 2 demonstrated alterations in the Golgi and accumulation of vesicles inside the flagellar pocket. Compound 2-treated amastigotes presented a high accumulation of cytoplasmic vesicles and a myelin-like structure. When administered in -infected mice, neither the oral nor the topical treatments were effective against the parasite. Based on the high in vitro activity, dimeric flavonoids can be used as a lead structure for the development of new molecules that could be useful for structure-active studies against .
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules24010001