Numerical Analysis via Mixed Inverse Hydrodynamic Lubrication Theory of Reciprocating Rubber Seal Considering the Friction Thermal Effect

This study investigates how operating conditions such as ambient temperature and sealing pressure affect sealing performance for a typical U-cup seal. The developed analysis method combines inverse fluid lubrication (IHL) theory and the Greenwood–Williamson contact model (G–W model), and the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-01, Vol.13 (1), p.153
Hauptverfasser: Kim, Bongjun, Suh, Junho, Lee, Bora, Chun, Yondo, Hong, Geuntae, Park, Jungjoon, Yu, Yonghun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates how operating conditions such as ambient temperature and sealing pressure affect sealing performance for a typical U-cup seal. The developed analysis method combines inverse fluid lubrication (IHL) theory and the Greenwood–Williamson contact model (G–W model), and the effect of increasing surface temperature due to frictional heat generated between two surfaces is considered. Commercial FE software (ABAQUS) was used to simulate the interference fit analysis of rubber seals and the pressurized process. Through this model, the film distribution, working fluid leakage, and friction force in the sealing area were discussed according to the operating parameters, such as sealed pressure, rod velocity, and ambient temperature. The simulation results demonstrate the effect of fluid viscosity on oil film formation (which varies with ambient temperature), the effect of increasing the surface temperature, and the effect of surface roughness at a very small film thickness.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13010153