Understanding the near-field photoacoustic spatiotemporal profile from nanostructures

Understanding the mechanism of photoacoustic generation at the nanoscale is key to developing more efficient photoacoustic devices and agents. Unlike the far-field photoacoustic effect that has been well employed in imaging, the near-field profile leads to a complex wave-tissue interaction but is un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photoacoustics (Munich) 2022-12, Vol.28, p.100425, Article 100425
Hauptverfasser: Wang, Hanwei, Chen, Yun-Sheng, Zhao, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the mechanism of photoacoustic generation at the nanoscale is key to developing more efficient photoacoustic devices and agents. Unlike the far-field photoacoustic effect that has been well employed in imaging, the near-field profile leads to a complex wave-tissue interaction but is understudied. Here we show that the spatiotemporal profile of the near-field photoacoustic waves can be shaped by laser pulses, anisotropy, and the spatial arrangement of nanostructure(s). Using a gold nanorod as an example, we discovered that the near-field photoacoustic amplitude in the short axis is ∼75 % stronger than the long axis, and the anisotropic spatial distribution converges to an isotropic spherical wave at ∼50 nm away from the nanorod's surface. We further extend the model to asymmetric gold nanostructures by arranging isotropic nanoparticles anisotropically with broken symmetry to achieve a precisely controlled near-field photoacoustic "focus" largely within an acoustic wavelength.
ISSN:2213-5979
2213-5979
DOI:10.1016/j.pacs.2022.100425