The pharynx of the stem-chondrichthyan Ptomacanthus and the early evolution of the gnathostome gill skeleton

The gill apparatus of gnathostomes (jawed vertebrates) is fundamental to feeding and ventilation and a focal point of classic hypotheses on the origin of jaws and paired appendages. The gill skeletons of chondrichthyans (sharks, batoids, chimaeras) have often been assumed to reflect ancestral states...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-05, Vol.10 (1), p.2050-2050, Article 2050
Hauptverfasser: Dearden, Richard P., Stockey, Christopher, Brazeau, Martin D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The gill apparatus of gnathostomes (jawed vertebrates) is fundamental to feeding and ventilation and a focal point of classic hypotheses on the origin of jaws and paired appendages. The gill skeletons of chondrichthyans (sharks, batoids, chimaeras) have often been assumed to reflect ancestral states. However, only a handful of early chondrichthyan gill skeletons are known and palaeontological work is increasingly challenging other pre-supposed shark-like aspects of ancestral gnathostomes. Here we use computed tomography scanning to image the three-dimensionally preserved branchial apparatus in Ptomacanthus , a 415 million year old stem-chondrichthyan. Ptomacanthus had an osteichthyan-like compact pharynx with a bony operculum helping constrain the origin of an elongate elasmobranch-like pharynx to the chondrichthyan stem-group, rather than it representing an ancestral condition of the crown-group. A mixture of chondrichthyan-like and plesiomorphic pharyngeal patterning in Ptomacanthus challenges the idea that the ancestral gnathostome pharynx conformed to a morphologically complete ancestral type. Our understanding of the origin of jaws is hampered by the poor fossil preservation of pharyngeal morphology. Here, Dearden et al. provide insight into the skull conditions of early jawed vertebrates through three-dimensional computed tomography imaging of a 415 million year old stem-chondrichthyan.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10032-3