Evaluation of Microwave-Assisted Extraction as a Potential Green Technology for the Isolation of Bioactive Compounds from Saffron (Crocus sativus L.) Floral By-Products
The saffron flower stigmas are used for the saffron spice production while the remaining saffron floral by-products, that are a valuable source of natural bioactive compounds, remain underutilized. The aim of this study was to evaluate the microwave-assisted extraction (MAE) through response surface...
Gespeichert in:
Veröffentlicht in: | Foods 2022-08, Vol.11 (15), p.2335 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The saffron flower stigmas are used for the saffron spice production while the remaining saffron floral by-products, that are a valuable source of natural bioactive compounds, remain underutilized. The aim of this study was to evaluate the microwave-assisted extraction (MAE) through response surface methodology to obtain high value-added compounds from saffron tepals as ingredients with potential application in the food, pharmaceutical and/or cosmetic industries. A central composite design was applied to optimize process variables: temperature, time and ethanol solvent concentration. Extracts were characterized in terms of total phenolic and total flavonoid content, and antioxidant capacity (ORAC and HOSC assays), being the maximum values obtained: 126.20 ± 2.99 mg GAE/g dry matter; 8.05 ± 0.11 mg CE/g dry matter; 6219 ± 246 μmol TEAC/dry matter; 3131 ± 205 μmol TEAC/dry matter, respectively. Results indicated that the optimal extraction conditions were the combination of low temperature (25 °C)—high extraction time (5 min) using ethanol as solvent (100%). MAE revealed to be an efficient technique to isolate bioactive compounds from saffron floral by-products with a low energy footprint. |
---|---|
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods11152335 |