Sn(IV)porphyrin-Incorporated TiO2 Nanotubes for Visible Light-Active Photocatalysis

In this study, two distinct photocatalysts, namely tin(IV)porphyrin-sensitized titanium dioxide nanotubes (SnP-TNTs) and titanium dioxide nanofibers (TNFs), were synthesized and characterized using various spectroscopic techniques. SnP-TNTs were formed through the hydrothermal reaction of NaOH with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2024-04, Vol.29 (7), p.1612
Hauptverfasser: Shee, Nirmal Kumar, Lee, Gi-Seon, Kim, Hee-Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, two distinct photocatalysts, namely tin(IV)porphyrin-sensitized titanium dioxide nanotubes (SnP-TNTs) and titanium dioxide nanofibers (TNFs), were synthesized and characterized using various spectroscopic techniques. SnP-TNTs were formed through the hydrothermal reaction of NaOH with TiO2 (P-25) nanospheres in the presence of Sn(IV)porphyrin (SnP), resulting in a transformation into Sn(IV)porphyrin-imbedded nanotubes. In contrast, under similar reaction conditions but in the absence of SnP, TiO2 (P-25) nanospheres evolved into nanofibers (TNFs). Comparative analysis revealed that SnP-TNTs exhibited a remarkable enhancement in the visible light photodegradation of model pollutants compared to SnP, TiO2 (P-25), or TNFs. The superior photodegradation activity of SnP-TNTs was primarily attributed to synergistic effects between TiO2 (P-25) and SnP, leading to altered conformational frameworks, increased surface area, enhanced thermo-chemical stability, unique morphology, and outstanding visible light photodegradation of cationic methylene blue dye (MB dye). With a rapid removal rate of 95% within 100 min (rate constant = 0.0277 min−1), SnP-TNTs demonstrated excellent dye degradation capacity, high reusability, and low catalyst loading, positioning them as more efficient than conventional catalysts. This report introduces a novel direction for porphyrin-incorporated catalytic systems, holding significance for future applications in environmental remediation.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29071612