zMAP toolset: model-based analysis of large-scale proteomic data via a variance stabilizing z-transformation

Isobaric labeling-based mass spectrometry (ILMS) has been widely used to quantify, on a proteome-wide scale, the relative protein abundance in different biological conditions. However, large-scale ILMS data sets typically involve multiple runs of mass spectrometry, bringing great computational diffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2024-10, Vol.25 (1), p.267-267, Article 267
Hauptverfasser: Gui, Xiuqi, Huang, Jing, Ruan, Linjie, Wu, Yanjun, Guo, Xuan, Cao, Ruifang, Zhou, Shuhan, Tan, Fengxiang, Zhu, Hongwen, Li, Mushan, Zhang, Guoqing, Zhou, Hu, Zhan, Lixing, Liu, Xin, Tu, Shiqi, Shao, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isobaric labeling-based mass spectrometry (ILMS) has been widely used to quantify, on a proteome-wide scale, the relative protein abundance in different biological conditions. However, large-scale ILMS data sets typically involve multiple runs of mass spectrometry, bringing great computational difficulty to the integration of ILMS samples. We present zMAP, a toolset that makes ILMS intensities comparable across mass spectrometry runs by modeling the associated mean-variance dependence and accordingly applying a variance stabilizing z-transformation. The practical utility of zMAP is demonstrated in several case studies involving the dynamics of cell differentiation and the heterogeneity across cancer patients.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-024-03382-9