Machine learning model to predict hypotension after starting continuous renal replacement therapy

Hypotension after starting continuous renal replacement therapy (CRRT) is associated with worse outcomes compared with normotension, but it is difficult to predict because several factors have interactive and complex effects on the risk. The present study applied machine learning algorithms to devel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-08, Vol.11 (1), p.17169-17169, Article 17169
Hauptverfasser: Kang, Min Woo, Kim, Seonmi, Kim, Yong Chul, Kim, Dong Ki, Oh, Kook-Hwan, Joo, Kwon Wook, Kim, Yon Su, Han, Seung Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypotension after starting continuous renal replacement therapy (CRRT) is associated with worse outcomes compared with normotension, but it is difficult to predict because several factors have interactive and complex effects on the risk. The present study applied machine learning algorithms to develop models to predict hypotension after initiating CRRT. Among 2349 adult patients who started CRRT due to acute kidney injury, 70% and 30% were randomly assigned into the training and testing sets, respectively. Hypotension was defined as a reduction in mean arterial pressure (MAP) ≥ 20 mmHg from the initial value within 6 h. The area under the receiver operating characteristic curves (AUROCs) in machine learning models, such as support vector machine (SVM), deep neural network (DNN), light gradient boosting machine (LGBM), and extreme gradient boosting machine (XGB) were compared with those in disease-severity scores such as the Sequential Organ Failure Assessment and Acute Physiology and Chronic Health Evaluation II. The XGB model showed the highest AUROC (0.828 [0.796–0.861]), and the DNN and LGBM models followed with AUROCs of 0.822 (0.789–0.856) and 0.813 (0.780–0.847), respectively; all machine learning AUROC values were higher than those obtained from disease-severity scores (AUROCs 
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-96727-4