Optical mapping of neuronal activity during seizures in zebrafish

Mapping neuronal activity during the onset and propagation of epileptic seizures can provide a better understanding of the mechanisms underlying this pathology and improve our approaches to the development of new drugs. Recently, zebrafish has become an important model for studying epilepsy both in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-06, Vol.7 (1), p.3025-12, Article 3025
Hauptverfasser: Turrini, L., Fornetto, C., Marchetto, G., Müllenbroich, M. C., Tiso, N., Vettori, A., Resta, F., Masi, A., Mannaioni, G., Pavone, F. S., Vanzi, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mapping neuronal activity during the onset and propagation of epileptic seizures can provide a better understanding of the mechanisms underlying this pathology and improve our approaches to the development of new drugs. Recently, zebrafish has become an important model for studying epilepsy both in basic research and in drug discovery. Here, we employed a transgenic line with pan-neuronal expression of the genetically-encoded calcium indicator GCaMP6s to measure neuronal activity in zebrafish larvae during seizures induced by pentylenetretrazole (PTZ). With this approach, we mapped neuronal activity in different areas of the larval brain, demonstrating the high sensitivity of this method to different levels of alteration, as induced by increasing PTZ concentrations, and the rescuing effect of an anti-epileptic drug. We also present simultaneous measurements of brain and locomotor activity, as well as a high-throughput assay, demonstrating that GCaMP measurements can complement behavioural assays for the detection of subclinical epileptic seizures, thus enabling future investigations on human hypomorphic mutations and more effective drug screening methods. Notably, the methodology described here can be easily applied to the study of many human neuropathologies modelled in zebrafish, allowing a simple and yet detailed investigation of brain activity alterations associated with the pathological phenotype.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-03087-z