Effective Evolutionary Algorithm for Solving the Real-Resource-Constrained Scheduling Problem
This paper defines and introduces the formulation of the Real-RCPSP (Real-Resource-Constrained Project Scheduling Problem), a new variant of the MS-RCPSP (Multiskill Resource-Constrained Project Scheduling Problem). Real-RCPSP is an optimization problem that has been attracting widespread interest f...
Gespeichert in:
Veröffentlicht in: | Journal of advanced transportation 2020-10, Vol.2020 (2020), p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper defines and introduces the formulation of the Real-RCPSP (Real-Resource-Constrained Project Scheduling Problem), a new variant of the MS-RCPSP (Multiskill Resource-Constrained Project Scheduling Problem). Real-RCPSP is an optimization problem that has been attracting widespread interest from the research community in recent years. Real-RCPSP has become a critical issue in many fields such as resource allocation to perform tasks in Edge Computing or arranging robots at industrial production lines at factories and IoT systems. Compared to the MS-RCPSP, the Real-RCPSP is supplemented with assumptions about the execution time of the task, so it is more realistic. The previous algorithms for solving the MS-RCPSP have only been verified on simulation data, so their results are not completely convincing. In addition, those algorithms are designed only to solve the MS-RCPSP, so they are not completely suitable for solving the new Real-RCPSP. Inspired by the Cuckoo Search approach, this literature proposes an evolutionary algorithm that uses the function Reallocate for fast convergence to the global extremum. In order to verify the proposed algorithm, the experiments were conducted on two datasets: (i) the iMOPSE simulation dataset that previous studies had used and (ii) the actual TNG dataset collected from the textile company TNG. Experimental results on the iMOPSE simulation dataset show that the proposed algorithm achieves better solution quality than the existing algorithms, while the experimental results on the TNG dataset have proved that the proposed algorithm decreases the execution time of current production lines at the TNG company. |
---|---|
ISSN: | 0197-6729 2042-3195 |
DOI: | 10.1155/2020/8897710 |