Site-selected in situ polymerization for living cell surface engineering

The construction of polymer-based mimicry on cell surface to manipulate cell behaviors and functions offers promising prospects in the field of biotechnology and cell therapy. However, precise control of polymer grafting sites is essential to successful implementation of biomimicry and functional mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-11, Vol.14 (1), p.7285-7285, Article 7285
Hauptverfasser: Zhong, Yihong, Xu, Lijia, Yang, Chen, Xu, Le, Wang, Guyu, Guo, Yuna, Cheng, Songtao, Tian, Xiao, Wang, Changjiang, Xie, Ran, Wang, Xiaojian, Ding, Lin, Ju, Huangxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The construction of polymer-based mimicry on cell surface to manipulate cell behaviors and functions offers promising prospects in the field of biotechnology and cell therapy. However, precise control of polymer grafting sites is essential to successful implementation of biomimicry and functional modulation, which has been overlooked by most current research. Herein, we report a biological site-selected, in situ controlled radical polymerization platform for living cell surface engineering. The method utilizes metabolic labeling techniques to confine the growth sites of polymers and designs a Fenton-RAFT polymerization technique with cytocompatibility. Polymers grown at different sites (glycans, proteins, lipids) have different membrane retention time and exhibit differential effects on the recognition behaviors of cellular glycans. Of particular importance is the achievement of in situ copolymerization of glycomonomers on the outermost natural glycan sites of cell membrane, building a biomimetic glycocalyx with distinct recognition properties. Constructing polymer-based mimics on the surface of cells has potential to manipulate cell behavior, but precise control of grafting sites is challenging. Here, the authors report a method for site selected radical polymerization on cell surfaces by metabolic labelling.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-43161-x