Numerical study of fractional order COVID-19 pandemic transmission model in context of ABO blood group
The worldwide association of health (WHO) has stated that COVID-19 (the novel coronavirus disease-2019) as a pandemic. Here, the common SEIR model is generalized in order to show the dynamics of COVID-19 transmission taking into account the ABO blood group of the infected people. Fractional order Ca...
Gespeichert in:
Veröffentlicht in: | Results in physics 2021-03, Vol.22, p.103852-103852, Article 103852 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The worldwide association of health (WHO) has stated that COVID-19 (the novel coronavirus disease-2019) as a pandemic. Here, the common SEIR model is generalized in order to show the dynamics of COVID-19 transmission taking into account the ABO blood group of the infected people. Fractional order Caputo derivative are used in the proposed model. Our study is guided by the results that have been obtained by Chen J, Fan H, Zhang L, et al. from three unique medical clinics in Wuhan and Shenzhen, China. In this study, the feasibility region of the proposed model are calculated plus the points of equilibrium. Also, the equilibrium points stability is examined. A unique solution existence for the proposed paradigm is proved via utilizing the fixed point theory with regards to Caputo fractional derivative. Numerical experiments of the proposed paradigm is done and we show its sensitivity to the fractional order. |
---|---|
ISSN: | 2211-3797 2211-3797 |
DOI: | 10.1016/j.rinp.2021.103852 |