A novel indoor localization method using passive phase difference fingerprinting based on channel state information
The device-free channel state information indoor fingerprint localization method may lead to phase offset errors, strong fingerprint noise and low sampling classification accuracy. In light of these characteristics, this article presents an indoor localization algorithm that is based on phase differ...
Gespeichert in:
Veröffentlicht in: | International journal of distributed sensor networks 2019-04, Vol.15 (4), p.155014771984409 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The device-free channel state information indoor fingerprint localization method may lead to phase offset errors, strong fingerprint noise and low sampling classification accuracy. In light of these characteristics, this article presents an indoor localization algorithm that is based on phase difference processing and principal component analysis. First, during the offline phase, this algorithm calculates phase differences to correct for random phase shifts and random time shifts in communication links. Second, the principal component analysis method is used to reduce the dimensionality of the denoised data and establish a robust fingerprint database. During the online phase, the algorithm trains a back-propagation neural network using the fingerprint data and determines the modelled mapping relationship between the fingerprint data and the physical localization after carrying out the phase difference correction and the principal component analysis–based dimensionality reduction. The experiments show that compared with existing fingerprint location methods, this algorithm has the advantages of significant denoising effectiveness and high localization accuracy. |
---|---|
ISSN: | 1550-1329 1550-1477 1550-1477 |
DOI: | 10.1177/1550147719844099 |