Modeling of Adjustable Bending Pipe to Compensate for Pipe Assembly Production Errors
The production of pipe assembly for a rocket engine has experienced challenges owing to the higher requirements of the joining and sealing performance. An adjustable laser bending pipe is a flexible and economical means of compensating for production errors after welding, located in the “closing” se...
Gespeichert in:
Veröffentlicht in: | Machines (Basel) 2022-06, Vol.10 (6), p.409 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The production of pipe assembly for a rocket engine has experienced challenges owing to the higher requirements of the joining and sealing performance. An adjustable laser bending pipe is a flexible and economical means of compensating for production errors after welding, located in the “closing” segment. To improve the productivity and accuracy of the adjustable laser bending pipe, inline measurement systems are integrated into production to develop an adaptive control system. The models of adjustable laser bending pipe to compensate for pipe assembly production errors are established using kinematics and the displacement screw system, and the proposed adaptive control system is validated by the experiment based on the springback-free laser pipe bending process. Using the proposed adaptive control system, the angle deviation decreases from 7.086° to 0.154°, and the distance deviation decreases from 5.076 mm to 0.104 mm. The validation results satisfactorily meet the requirement of the welding axis alignment of the pipe ends. These models demonstrate significant potential to be applied for calculating the feedback parameters required in the adjustments to compensate for pipe assembly production errors. |
---|---|
ISSN: | 2075-1702 2075-1702 |
DOI: | 10.3390/machines10060409 |