Evaluating climate models to analyze drought conditions in the western region of Bangladesh
Being susceptible to natural disasters, Bangladesh is one of the most disaster-prone countries. Among the various natural calamities, droughts are a frequent occurrence in the western region of the country. Hence, this study first compared the efficacy of five bias-corrected Regional Climate Models...
Gespeichert in:
Veröffentlicht in: | Progress in disaster science 2024-10, Vol.23, p.100356, Article 100356 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Being susceptible to natural disasters, Bangladesh is one of the most disaster-prone countries. Among the various natural calamities, droughts are a frequent occurrence in the western region of the country. Hence, this study first compared the efficacy of five bias-corrected Regional Climate Models (RCMs) - MIROC, NOAA, MPI, IPSL, and CCCma - for the Western region of Bangladesh with observed monthly precipitation and subsequent SPI values. Various evaluation methods- RMSE, Taylor Diagram, Mann–Whitney U Test, and t-test, were applied to precipitation and SPI3 values for the historical base period. Through these analyses, the MIROC model exhibited the highest level of accuracy. Accordingly, future projections for short-term droughts (SPI-3) and their characteristics were conducted using the ensemble of top three climate model under the RCM 8.5 W/m2 scenario. Short-term droughts are anticipated to become less frequent and severe in the 2060s and 2080s compared to the 2020s. Nonetheless, North-West region is projected to be more drought-prone than South-West until 2100. This research shows the importance of evaluating the better-fitting RCMs for assessing historical droughts and making reliable projections for the future. The methodology and findings can be employed in evidence-based decision-making and applied in other drought-prone areas to understand future drought risks.
•Climate models provide accurate projections for analyzing meteorological droughts.•The MIROC model is more suitable for analyzing droughts in Bangladesh.•North-West Bangladesh is more prone to drought than South-West regions. |
---|---|
ISSN: | 2590-0617 2590-0617 |
DOI: | 10.1016/j.pdisas.2024.100356 |