Performance Comparison of PD Data Acquisition Techniques for Condition Monitoring of Medium Voltage Cables
Already installed cables are aging and the cable network is growing rapidly. Improved condition monitoring methods are required for greater visibility of insulation defects in the cable networks. One of the critical challenges for continuous monitoring is the large amount of partial discharge (PD) d...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2020-08, Vol.13 (16), p.4272 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Already installed cables are aging and the cable network is growing rapidly. Improved condition monitoring methods are required for greater visibility of insulation defects in the cable networks. One of the critical challenges for continuous monitoring is the large amount of partial discharge (PD) data that poses constraints on the diagnostic capabilities. This paper presents the performance comparison of two data acquisition techniques based on phase resolved partial discharge (PRPD) and pulse acquisition (PA). The major contribution of this work is to provide an in-depth understanding of these techniques considering the perspective of randomness of the PD mechanism and improvements in the reliability of diagnostics. Experimental study is performed on the medium voltage (MV) cables in the laboratory environment. It has been observed that PRPD based acquisition not only requires a significantly larger amount of data but is also susceptible to losing the important information especially when multiple PD sources are being investigated. On the other hand, the PA technique presents improved performance for PD diagnosis. Furthermore, the use of the PA technique enables the efficient practical implementation of the continuous PD monitoring by reducing the amount of data that is acquired by extracting useful signals and discarding the silent data intervals. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13164272 |