Sistem Pendaratan Otomatis pada Quadcopter menggunakan Sliding Mode Controller
A quadcopter has a very nonlinear system characteristic that is influenced by unexpected disturbances such as the influence of wind that reflected off the ground when taking off or landing. Therefore, a robust control strategy is needed to improve the quadcopter performance. In this study, the control...
Gespeichert in:
Veröffentlicht in: | Jurnal Rekayasa Elektrika 2020-05, Vol.16 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A quadcopter has a very nonlinear system characteristic that is influenced by unexpected disturbances such as the influence of wind that reflected off the ground when taking off or landing. Therefore, a robust control strategy is needed to improve the quadcopter performance. In this study, the control strategy is used to resolve outdoor automatic landing problems in a stable manner using the Sliding Mode Control (SMC) algorithm. The quadcopter has six degrees of freedom (6-DoF) with only four independent inputs, this makes it impossible to control 6-DoF directly and simultaneously. To handle this, the proposed structure is a multilevel control structure, inner loop dan outer loop controller. The Inner loop controls the rotational dynamics subsystem (3-DoF), while the outer loop controls the translational dynamics subsystem (3-DoF) which is designed in conjunction with the generation of attitude angle set-point. With the concept of automatics landing can reduce the risk of accidents on a quadcopter. The SMC technique on an automatics quadcopter landing shows the results with an error in roll of ± 0.05 radians, pitch ± 0.03 radians, yaw less than 0.3 radians, and translational movements the z-axis is ± 0.2 meters. |
---|---|
ISSN: | 1412-4785 2252-620X |
DOI: | 10.17529/jre.v16i1.15389 |