Hyperbolic tessellations and generators of ${K}_{\textbf {3}}$ for imaginary quadratic fields
We develop methods for constructing explicit generators, modulo torsion, of the $K_3$-groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$-space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2021-01, Vol.9, Article e40 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop methods for constructing explicit generators, modulo torsion, of the $K_3$-groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic $3$-space or on direct calculations in suitable pre-Bloch groups and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite $K_3$-group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for $ K_3 $ of any field, predict the precise power of $2$ that should occur in the Lichtenbaum conjecture at $ -1 $ and prove that this prediction is valid for all abelian number fields. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2021.9 |