Oligonucleotide tagging for copper-free click conjugation

Copper-free click chemistry between cyclooctynes and azide is a mild, fast and selective technology for conjugation of oligonucleotides. However, technology for site-specific introduction of the requisite probes by automated protocols is scarce, while the reported cyclooctynes are large and hydropho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2013-06, Vol.18 (7), p.7346-7363
Hauptverfasser: Jawalekar, Anup M, Malik, Sudip, Verkade, Jorge M M, Gibson, Brian, Barta, Nancy S, Hodges, John C, Rowan, Alan, van Delft, Floris L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Copper-free click chemistry between cyclooctynes and azide is a mild, fast and selective technology for conjugation of oligonucleotides. However, technology for site-specific introduction of the requisite probes by automated protocols is scarce, while the reported cyclooctynes are large and hydrophobic. In this work, it is demonstrated that the introduction of bicyclo[6.1.0]nonyne (BCN) into synthetic oligonucleotides is feasible by standard solid-phase phosphoramidite chemistry. A range of phosphoramidite building blocks is presented for incoporation of BCN or azide, either on-support or in solution. The usefulness of the approach is demonstrated by the straightforward and high-yielding conjugation of the resulting oligonucleotides, including biotinylation, fluorescent labeling, dimerization and attachment to polymer.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules18077346