Photocatalytic removal of ciprofloxacin antibiotic from aqueous medium by applying AgI/Ag2O nanocomposite: Activity test, reaction kinetics, and catalyst reusability
Background: This study examined the removal of ciprofloxacin (CIP), which is a very widely used antibiotic, from an aqueous medium by applying AgI/Ag2O photocatalyst under visible light radiation. Methods: AgI/Ag2O was synthesized conveniently by applying a two-stage precipitation method. The synthe...
Gespeichert in:
Veröffentlicht in: | Environmental health engineering and management 2022-09, Vol.9 (3), p.311-318 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: This study examined the removal of ciprofloxacin (CIP), which is a very widely used antibiotic, from an aqueous medium by applying AgI/Ag2O photocatalyst under visible light radiation. Methods: AgI/Ag2O was synthesized conveniently by applying a two-stage precipitation method. The synthesized compound was characterized by X-ray powder diffraction (XRD), FE- field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray (EDX), and UV-Vis spectrophotometry. Different parameters including initial pH of the solution, initial CIP concentration, reaction kinetics, and catalyst reusability were investigated. Results: Concurrent use of AgI and Ag2O caused improved photocatalytic properties in the presence of UV light. The pH and initial concentration of CIP affected the process efficiency; 95% efficiency was achieved within 100 min at pH 9. Furthermore, the process efficiency was still maintained over 90% after four consecutive cycles. Conclusion: The photocatalytic degradation process using AgI/Ag2O nanocomposite under visible light radiation is a suitable method for removing CIP from aqueous media due to its high efficiency and stability. |
---|---|
ISSN: | 2423-3765 2423-4311 |
DOI: | 10.34172/EHEM.2022.32 |