An interpretable framework for sleep posture change detection and postural inactivity segmentation using wrist kinematics

Sleep posture and movements offer insights into neurophysiological health and correlate with overall well-being and quality of life. Clinical practices utilise polysomnography for sleep assessment, which is intrusive, performed in unfamiliar environments, and requires trained personnel. While sensor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-10, Vol.13 (1), p.18027-18027, Article 18027
Hauptverfasser: Elnaggar, Omar, Arelhi, Roselina, Coenen, Frans, Hopkinson, Andrew, Mason, Lyndon, Paoletti, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sleep posture and movements offer insights into neurophysiological health and correlate with overall well-being and quality of life. Clinical practices utilise polysomnography for sleep assessment, which is intrusive, performed in unfamiliar environments, and requires trained personnel. While sensor technologies such as actigraphy are less invasive alternatives, concerns about their reliability and precision in clinical practice persist. Moreover, the field lacks a universally accepted algorithm, with methods ranging from raw signal thresholding to data-intensive classification models that may be unfamiliar to medical staff. This paper proposes a comprehensive framework for objectively detecting sleep posture changes and temporally segmenting postural inactivity using clinically relevant joint kinematics, measured by a custom-made wearable sensor. The framework was evaluated on wrist kinematic data from five healthy participants during simulated sleep. Intuitive three-dimensional visualisations of kinematic time series were achieved through dimension reduction-based preprocessing, providing an out-of-the-box framework explainability that may be useful for clinical monitoring and diagnosis. The proposed framework achieved up to 99.2% F1-score and 0.96 Pearson’s correlation coefficient for posture detection and inactivity segmentation respectively. This work paves the way for reliable home-based sleep movement analysis, serving patient-centred longitudinal care.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-44567-9