Hypoxia induces docetaxel resistance in triple-negative breast cancer via the HIF-1α/miR-494/Survivin signaling pathway

Cytotoxic chemotherapy is the major strategy to prevent and reduce triple-negative breast cancer (TNBC) progression and metastasis. Hypoxia increases chemoresistance and is associated with a poor prognosis for patients with cancer. Based on accumulating evidence, microRNAs (miRNAs) play an important...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neoplasia (New York, N.Y.) N.Y.), 2022-10, Vol.32, p.100821-100821, Article 100821
Hauptverfasser: Li, Hongchang, Sun, Xianhao, Li, Jindong, Liu, Weiyan, Pan, Gaofeng, Mao, Anwei, Liu, Jiazhe, Zhang, Qing, Rao, Longhua, Xie, Xiaofeng, Sheng, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cytotoxic chemotherapy is the major strategy to prevent and reduce triple-negative breast cancer (TNBC) progression and metastasis. Hypoxia increases chemoresistance and is associated with a poor prognosis for patients with cancer. Based on accumulating evidence, microRNAs (miRNAs) play an important role in acquired drug resistance. However, the role of miRNAs in hypoxia-induced TNBC drug resistance remains to be clarified. Here, we found that hypoxia induced TNBC docetaxel resistance by decreasing the miR-494 level. Modulating miR-494 expression altered the sensitivity of TNBC cells to DTX under hypoxic conditions. Furthermore, we identified Survivin as a direct miR-494 target. Hypoxia upregulated survivin expression. In a clinical study, the HIF-1α/miR-494/Survivin signaling pathway was also active in primary human TNBC, and miR-494 expression negatively correlated with HIF-1α and survivin expression. Finally, in a xenograft model, both miR-494 overexpression and the HIF-1α inhibitor PX-478 increased the sensitivity of TNBC to DTX by suppressing the HIF-1α/miR-494/Survivin signaling pathway in vivo. In conclusion, treatments targeting the HIF-1α/miR-494/Survivin signaling pathway potentially reverse hypoxia-induced drug resistance in TNBC.
ISSN:1476-5586
1522-8002
1476-5586
DOI:10.1016/j.neo.2022.100821