Hydrological drought forecasting and monitoring system development using artificial neural network (ANN) in Ethiopia

The objective of this study is to investigate and perform long–term forecasting of both streamflow and hydrological drought over Ethiopia. Observed streamflow and precipitation data are collected from 17 streamflow stations and 34 rainfall gauge stations to forecast future streamflow and hydrologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-02, Vol.9 (2), p.e13287-e13287, Article e13287
Hauptverfasser: Tareke, Kassa Abera, Awoke, Admasu Gebeyehu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study is to investigate and perform long–term forecasting of both streamflow and hydrological drought over Ethiopia. Observed streamflow and precipitation data are collected from 17 streamflow stations and 34 rainfall gauge stations to forecast future streamflow and hydrological drought from 2026 to 2099. Streamflow forecasting is performed using an artificial neural network (ANN) in conjunction with python software. Observed precipitation and streamflow data from 1973 to 2014 are used to train and test the ANN model by 70 and 30% ratios, respectively. After training the model, future downscaled precipitation data from regional climate models (RCM) have been used as input data to forecast future streamflow. Three RCM models were used to downscale historical and future climate data. RACMO is found a good downscaling model for all selected stations. The linear scaling bias correction technique results in less than 2% error compared to other alternative techniques. The result indicates that ANN is a good tool to forecast streamflow in areas having a good correlation between precipitation and streamflow such as Abbay, Awash, Baro, Omo Gibe, and Tekeze river basins. But in arid areas for example Genale Dawa, Wabishebele, and Rift Valley basins, the model is not suitable because the input data (precipitation) have high variation than the output variable (streamflow). In such areas, meteorological drought analysis and forecasting are better than hydrological drought analysis. Finally, future hydrological drought is analyzed using forecasted streamflow data as input to the streamflow drought index (SDI). The result indicates that 2028, 2036, 2042, 2044, 2062, and 2063 are the expected extreme drought years in most river basins of Ethiopia in the future. This shows that at least one extreme drought is expected in each decade in the future. Therefore, extensive research in drought analysis and forecasting is needed to develop an effective drought early warning system, and water resource management policy.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e13287