New multiplicity results in prescribing Q-curvature on standard spheres

In this paper, we study the problem of prescribing -Curvature on higher dimensional standard spheres. The problem consists in finding the right assumptions on a function so that it is the -Curvature of a metric conformal to the standard one on the sphere. Using some pinching condition, we track the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2024-07, Vol.24 (3), p.696-719
Hauptverfasser: Ben Ayed, Mohamed, El Mehdi, Khalil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the problem of prescribing -Curvature on higher dimensional standard spheres. The problem consists in finding the right assumptions on a function so that it is the -Curvature of a metric conformal to the standard one on the sphere. Using some pinching condition, we track the change in topology that occurs when crossing a critical level (or a virtually critical level if it is a critical point at infinity) and then compute a certain Euler-Poincaré index which allows us to prove the existence of many solutions. The locations of the levels sets of these solutions are determined in a very precise manner. These type of multiplicity results are new and are proved without any assumption of symmetry or periodicity on the function
ISSN:2169-0375
2169-0375
DOI:10.1515/ans-2023-0135