Experimental and Numerical Investigation into Full-Scale Model of New Type Assembled Integral Utility Tunnel

This article summarizes the current construction methods of prefabricated utility tunnels. (1) The proposed cast-in-place utility tunnel project was used as a background for this study. (2) The original cast-in-place structure was divided into components, and the connection methods of prefabricated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2023-06, Vol.13 (6), p.1428
Hauptverfasser: Zhang, Jichao, Zhang, Yan, Peng, Chaoheng, Lei, Youkun, Zhang, Aijun, Zuo, Zhengxuan, Chen, Zeyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article summarizes the current construction methods of prefabricated utility tunnels. (1) The proposed cast-in-place utility tunnel project was used as a background for this study. (2) The original cast-in-place structure was divided into components, and the connection methods of prefabricated composite slabs and mortise and tenon joints were used to propose a new type of prefabricated concrete utility tunnel construction method. After completing the design of the new prefabricated utility tunnel, a numerical simulation analysis of the actual stress situation of the utility tunnel was carried out using ABAQUS finite element software to verify the overall structural performance of the assembled utility tunnel. In addition, after completing the construction of the full-size model of the dual chamber, static load tests were carried out. (3) The test used the method of monotonic static bidirectional loading with a central hydraulic jack and tensioned steel strands, analyzed the cracks, deformation curves, and stress-strain of steel bars and concrete of the overall structure of the utility tunnel, and (4) verified the feasibility of the new assembled integral utility tunnel.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings13061428