Prediction of Type and Recurrence of Atrial Fibrillation after Catheter Ablation via Left Atrial Electroanatomical Voltage Mapping Registration and Multilayer Perceptron Classification: A Retrospective Study
Atrial fibrillation (AF) is a common cardiac arrhythmia and affects one to two percent of the population. In this work, we leverage the three-dimensional atrial endocardial unipolar/bipolar voltage map to predict the AF type and recurrence of AF in 1 year. This problem is challenging for two reasons...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2022-05, Vol.22 (11), p.4058 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atrial fibrillation (AF) is a common cardiac arrhythmia and affects one to two percent of the population. In this work, we leverage the three-dimensional atrial endocardial unipolar/bipolar voltage map to predict the AF type and recurrence of AF in 1 year. This problem is challenging for two reasons: (1) the unipolar/bipolar voltages are collected at different locations on the endocardium and the shapes of the endocardium vary widely in different patients, and thus the unipolar/bipolar voltage maps need aligning to the same coordinate; (2) the collected dataset size is very limited. To address these issues, we exploit a pretrained 3D point cloud registration approach and finetune it on left atrial voltage maps to learn the geometric feature and align all voltage maps into the same coordinate. After alignment, we feed the unipolar/bipolar voltages from the registered points into a multilayer perceptron (MLP) classifier to predict whether patients have paroxysmal or persistent AF, and the risk of recurrence of AF in 1 year for patients in sinus rhythm. The experiment shows our method classifies the type and recurrence of AF effectively. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22114058 |