An Intelligent Improvement of Internet-Wide Scan Engine for Fast Discovery of Vulnerable IoT Devices
Since 2016, Mirai and Persirai malware have infected hundreds of thousands of Internet of Things (IoT) devices and created a massive IoT botnet, which caused distributed denial of service (DDoS) attacks. IoT malware targets vulnerable IoT devices, which are vulnerable to security risks. Techniques a...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2018-05, Vol.10 (5), p.151 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since 2016, Mirai and Persirai malware have infected hundreds of thousands of Internet of Things (IoT) devices and created a massive IoT botnet, which caused distributed denial of service (DDoS) attacks. IoT malware targets vulnerable IoT devices, which are vulnerable to security risks. Techniques are needed to prevent IoT devices from being exploited by attackers. However, unlike high-performance PCs, IoT devices are lightweight, low-power, and low-cost, having performance limitations regarding processing and memory, which makes it difficult to install security and anti-malware programs. Recently, several studies have been attempted to quickly search for vulnerable internet-connected devices to solve this real issue. Issues yet to be studied still exist regarding these types of internet-wide scan technologies, such as filtering by security devices and a shortage of collected operating system (OS) information. This paper proposes an intelligent internet-wide scan model that improves IP state scanning with advanced internet protocol (IP) randomization, reactive protocol (port) scanning, and OS fingerprinting scanning, applying k* algorithm in order to find vulnerable IoT devices. Additionally, we describe the experiment’s results compared to the existing internet-wide scan technologies, such as ZMap and Shodan. As a result, the proposed model experimentally shows improved performance. Although we improved the ZMap, the throughput per minute (TPM) performance is similar to ZMap without degrading the IP scan throughput and the performance of generating a single IP address is about 118% better than ZMap. In the protocol scan performance experiments, it is about 129% better than the Censys based ZMap, and the performance of OS fingerprinting is better than ZMap, with about 50% accuracy. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym10050151 |