Arginyl dipeptides increase the frequency of NaCl-elicited responses via epithelial sodium channel alpha and delta subunits in cultured human fungiform taste papillae cells
Salty taste is one of the five basic tastes and is often elicited by NaCl. Because excess sodium intake is associated with many health problems, it could be useful to have salt taste enhancers that are not sodium based. In this study, the regulation of NaCl-induced responses was investigated in cult...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-08, Vol.7 (1), p.7483-12, Article 7483 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Salty taste is one of the five basic tastes and is often elicited by NaCl. Because excess sodium intake is associated with many health problems, it could be useful to have salt taste enhancers that are not sodium based. In this study, the regulation of NaCl-induced responses was investigated in cultured human fungiform taste papillae (HBO) cells with five arginyl dipeptides: Ala-Arg (AR), Arg-Ala (RA), Arg-Pro (RP), Arg-Glu (RE), and Glu-Arg (ER); and two non-arginyl dipeptides: Asp-Asp (DD) and Glu-Asp (ED). AR, RA, and RP significantly increased the number of cell responses to NaCl, whereas no effect was observed with RE, ER, DD, or ED. We also found no effects with alanine, arginine, or a mixture of both amino acids. Pharmacological studies showed that AR significantly increased responses of amiloride-sensitive but not amiloride-insensitive cells. In studies using small interfering RNAs (siRNAs), responses to AR were significantly decreased in cells transfected with siRNAs against epithelial sodium channel ENaCα or ENaCδ compared to untransfected cells. AR dramatically increased NaCl-elicited responses in cells transfected with NHE1 siRNA but not in those transfected with ENaCα or ENaCδ siRNAs. Altogether, AR increased responses of amiloride-sensitive cells required ENaCα and ENaCδ. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-07756-x |